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Abstract
Ultrafast intersubband excitation of electrons in tunnel-coupled wells is studied
in respect of its dependence on the structure parameters, the duration of the
infrared pump and the detuning frequency. The temporal dependences of
the photoinduced carrier concentration and dipole moment are obtained for
two cases of transitions: from the single ground state to the tunnel-coupled
excited states and from the tunnel-coupled states to the single excited state.
The peculiarities of dephasing and population relaxation processes are also
taken into account. The nonlinear regime of the response is also considered
when the splitting energy between the tunnel-coupled levels is renormalized
by the photoexcited electron concentration. The dependences of the period
and the amplitude of oscillations on the excitation pulse are presented with a
description of the damping of the nonlinear oscillations.

1. Introduction

The coherent dynamics of electrons in heterostructures has been thoroughly examined during
the past decade for the case of the interband ultrafast excitation by a near-infrared (IR) pulse
(see [1] for review). Recently, a mid-IR pump has also been employed for the treatment of
the coherent dynamics of electrons under the intersubband excitation; see the review [2] and
in [3, 4]. Although the intersubband transitions in heterostructures are similar to the multi-level
model widely used in the optics of atomic systems [5], a special consideration is necessary for
tunnel-coupled heterostructures. For example, a coherent transfer of electrons between tunnel-
uncoupled states of a double quantum well (DQW) to the common excited state under a mid-IR
pump was considered in [6]. Moreover, a new type of semiconductor unipolar laser operating
in the mid-infrared spectral region has been demonstrated. This type of device is based on a
three-bound-state coupled DQW with a single-excited level and two coupled lower levels [7].
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Figure 1. Band diagrams and dispersion laws for the intersubband excitation of tunnel-coupled
wells with single-ground (A) or single-excited (B) states.

To the best of our knowledge, an investigation of the coherent dynamics in tunnel-coupled
DQWs under ultrafast mid-IR pump has not yet been performed. The key question here is
the possibility to observe these oscillations under an effective intersubband scattering. In the
present work we carry out the theory of the ultrafast response on the intersubband excitation
between the tunnel-coupled states and the single level, which can be ground or excited, and
we demonstrate the possibility for observation of the ultrafast response under a mid-IR pump.

The study we will fulfill next is based on the quantum kinetic equation for the density
matrix averaged over the pump frequency, excluding the intersubband polarization at the
mid-IR frequency (see evaluation in [8, 9]). We will discuss the effects of the intersubband
transition peculiarities by means of the intersubband generation rate, taking into account the
coherent superposition of the tunnel-coupled states. With this purpose we take into account
the peculiarities of the intersubband excitation for two cases: (A) when the electron transition
occurs between the single-ground and the tunnel-coupled excited states, or (B) when the
transition takes place from the tunnel-coupled states to the single-excited state. To illustrate
these scenarios we have represented in figure 1 the band diagrams and the dispersion laws
for two DQW samples of GaAs/Al0.35Ga0.65As/GaAs, with layer widths of 150/130/40 Å and
150/20/120 Å, corresponding to the cases (A) and (B), respectively. We have chosen the DQW
structures in such a way that the energy separation between the coupled sublevels, �T , is
about 10 meV and the mid-IR pump energy is about 50 meV for both cases. In this context the
population relaxation is controlled by the LO phonon emission [10], while the dephasing of
the tunnel-coupled states for case (B) is determined by the quasi-elastic scattering; we describe
these relaxation processes by introducing the corresponding relaxation times. Thus, for the
case of the second-order response we have obtained an explicit description of the response.
Since the interwell redistribution of the charge appears under a relatively low pump intensity,
we have also considered the nonlinear regime of oscillations, solving the system of nonlinear
equations for the population of the single level and the 2 × 2 density matrix of the tunnel-
coupled states. Moreover, we will compare the present results with the corresponding ones for
the interband excitation case.

The paper is organized as follows. In section 2 we derive the balance equations,
which describe the coherent response of electrons in DQWs under the ultrafast
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intersubband excitation. In section 3 we discuss the emerging quantum beats and the
peculiarities of the coherent response under the finite duration excitation, stressing the
differences between the cases of intersubband and interband excitation. Section 4 contains the
description of the nonlinear response. The conclusions and discussion of the approximations
used are given in the last section.

2. Balance equations

The coherent dynamics of the electrons, when photoexcited by an ultra-short pulse, is
described below in the framework of the second-order response on the intersubband excitation.
Performing the average over the period of the radiation we obtain the quantum kinetic equation
for the density matrix, ρ̂t , in the following form (see [8, 9]):

∂ρ̂t

∂ t
+

i

h̄
[Ĥ , ρ̂t ] = Ĝt + Îsc, (1)

where Ĥ is the Hamiltonian of the DQWs under consideration, Îsc is the collision integral, and
Ĝt is the intersubband generation rate. When the electrons are excited by a transverse electric
field E⊥wt exp(−iωt) + c.c., with a frequency ω and an envelope function wt , the generation
rate is given by

Ĝt = 1

h̄2

∫ 0

−∞
dτ eλτ−iωτ

[
eiĤτ/h̄

[
δ̂ht+τ , ρ̂eq

]
eiĤτ/h̄ , δ̂h

+
t

]
+ h.c. (2)

Here λ → 0, the perturbation operator, δ̂ht = (ie/ω)E⊥v̂⊥wt , is written through the
transverse velocity operator v̂⊥ and ρ̂eq is the equilibrium density matrix when the second-order
contributions to the response are taken into account.

Neglecting the non-resonant mixing between the single and the tunnel-coupled levels, we
describe the system by the scalar distribution function, F (k)

pt , where k = 0, ex correspond to
the single electron state (ground |0〉 or excited |ex〉 state for the cases (A) or (B), respectively),
and by the 2 × 2 matrix function f̂pt which describes the tunnel-coupled states |u〉 and |l〉
(upper and lower, respectively). Within the framework of the momentum representation, with
the in-plane momentum p, equation (1) is transformed into

∂ F (k)
pt

∂ t
= G(k)

pt + I (k)
sc (Ft |p),

∂ f̂pt

∂ t
+

i

h̄
[ĥDQW, f̂pt ] = Ĝpt + Îsc( f̂t |p),

(3)

where ĥDQW = (�/2)σ̂z + T σ̂x is the matrix Hamiltonian of the tunnel-coupled states, � is the
interlevel splitting energy, T is the tunnel matrix element, and σ̂x,z are the Pauli matrices. Here
the generation rates are different for the cases (A) and (B). Neglecting the overlap between |k〉
and |l〉 states, when 〈0|v̂⊥|l〉 � 0, and doing the straightforward calculations of equation (2),
we obtain for the case (A)∣∣∣∣ G(0)

pt

〈 jp|Ĝt |p j ′〉
∣∣∣∣ = θ(εF − εp)

(
eE⊥
h̄ω

)2

|〈0|v̂⊥|u〉|2wt

∫ 0

−∞
dτ wt+τ eτ/τ2−i�ωτ

×
∣∣∣∣ −〈u| exp(iĥDQWτ/h̄)|u〉
〈 j | exp(iĥDQWτ/h̄)| j〉δu j ′

∣∣∣∣ + h.c., (4)

where θ(εF − εp) is the ground state equilibrium distribution for the zero temperature case,
εF is the Fermi energy, and εp = p2/2m is the kinetic energy with the effective mass m. The
dephasing time, τ2, is introduced here instead of the λ-parameter of equation (2) with the aim
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of describing a finite broadening of the intersubband transitions. For the case (B) we use
〈ex |v̂⊥|l〉 � 0, and the generation rate takes the form∣∣∣∣ G(ex)

pt

〈 jp|Ĝt |p j ′〉
∣∣∣∣ =

(
eE⊥
h̄ω

)2

|〈ex |v̂⊥|u〉|2wt

∫ 0

−∞
dτ wt+τ eτ/τ2−i�ωτ

×
∣∣∣∣ −〈u|ρ̂DQW exp(−iĥDQWτ/h̄)|u〉
δ ju〈u|ρ̂DQW exp(−iĥDQWτ/h̄)| j ′〉

∣∣∣∣ + h.c., (5)

where ρ̂DQW is the equilibrium density matrix of the tunnel-coupled levels. The detuning
frequency in equations (4), (5), �ω = ω − εo/h̄, is evaluated through the energy difference
between single and tunnel-coupled levels, εo (see figure 1). The remaining matrix elements in
equations (4), (5) are calculated by using the matrix equalities:

exp(−iĥDQWτ/h̄) = cos �T τ/2 + i
�σ̂z + 2T σ̂x

�T
sin �T τ/2,

ρ̂DQW = f (+)
ε +

�σ̂z + 2T σ̂x

�T
f (−)
ε .

(6)

Here �T = �T /h̄ is the frequency of oscillations due to transitions between tunnel-coupled
levels, �T = √

�2 + (2T )2 and f (±)
ε = [θ(εF − ε − �/2) ± θ(εF − ε + �/2)]/2.

When doing the summation over the 2D momenta we introduce the population of the
single level, Nt = (2/L2)

∑
p Fpt , and the 2 × 2 matrix of concentration (2/L2)

∑
p f̂pt =

nt + (nt · σ̂t ), which is written through the scalar and vector components of the concentration,
nt and nt . Due to the particle conservation law, Nt + nt = n2D with the total 2D concentration
n2D, the system (3) is transformed into the balance equations

dnt

dt
= −dNt

dt
= G(t) − S(t),

dnt

dt
− [L × nt ] + Σ(t) = G(t), (7)

where S(t) = nu
t /τ1 for the case (A) or S(t) = nt/τ1 for the case (B) and nu

t = nt + nz
t .

The vector Σ(t) is defined as Σ(t) = (0, 0, nu
t /τ1) (case (A)) or Σ(t) = ν̂nt (case (B)).

Here τ1 stands for the population relaxation time between single level and tunnel-coupled
states, while the vector L = (2T/h̄, 0,�/h̄) describes the dynamic properties of the tunnel-
coupled electronic states. The relaxation matrix in the case (B), ν̂, is determined by the
non-zero components (ν̂)xx = (ν̂)yy = τ−1

0 , where the dephasing relaxation time, τ0, was
introduced in [11] for the case of elastic scattering in DQWs. The generation rates G(t) and
G(t) = [Gx(t), G y(t), G(t)] are obtained from equations (4) to (6) in the form[

Gx(t)
G y(t)

]
= 2T

�T

Nwt

π

∫ 0

−∞
dτ

τ 2
p

wt+τ eτ/τ2

×
{

a+

[− cos(�ω + �T /2)τ

sin(�ω + �T /2)τ

]
− a−

[− cos(�ω − �T /2)τ

sin(�ω − �T /2)τ

]}
, (8)

G(t) = Nwt

π

∫ 0

−∞
dτ

τ 2
p

wt+τ eτ/τ2
[
b+ cos(�ω + �T /2)τ + b− cos(�ω − �T /2)τ

]
. (9)

The characteristic photoinduced concentration in equations (8), (9) is determined as

N = πn2D

2

(
eE⊥v⊥

h̄ω
τp

)2

(10)

with the characteristic pulse duration τp. The intersubband velocities v2
⊥ are equal to

|〈0|v̂⊥|l〉|2 or |〈ex |v̂⊥|l〉|2 for the cases (A) or (B), respectively, and v⊥ definition is given
in [11]. The coefficients a± in equation (8) are given by a± = (1 ± �n/n2D)/2 (moreover,



Coherent oscillations of electrons in DQW 5331

Figure 2. Square of the wavefunctions close to the resonance. (a) Structure (A). Solid curve:
single-ground level. Dashed curve: lower coupled-level. Dotted curve: upper coupled level.
(b) Structure (B). Solid curve: lower coupled-level. Dashed curve: upper coupled-level. Dotted
curve: single-excited level. Vertical lines indicate the position of the DQW interfaces.

�n = 0 for DQW (A)) while, in equation (9), b± = 1 ∓ �/�T for the case (A) and
b± = (1 ± �/�T )(1 ± �n/n2D)/2 for DQW (B), where �n = ρ2D�T .

Next, taking into account the Coulomb renormalization of the tunnel-coupled levels, we
have to replace ĥDQW in the matrix equation (3) by the Hartree–Fock Hamiltonian, h̃DQW,
written in the form3 (see [12, 13])

h̃DQW = ĥDQW +
∑

Q

vQ
[
nQt e−iQ·r − e−iQ·rρ̂t eiQ·r] . (11)

Here Q is the 3D wavevector, vQ is the Coulomb matrix element, and nQt = Tr(ρ̂t eiQ·r)
is the Fourier transform of the electron density. Further transformations lead to the balance
equation (7) with the renormalized vector Lt written through the level splitting energy

�(t) = � ± 4πe2

ε
Z(nz

t − nt ), (12)

where Z is the distance between the centres of l- and r -QWs and ε is the dielectric permittivity
supposed to be uniform across the DQWs. The signs + and − in equation (12) correspond to
the cases (A) and (B), respectively. The evaluation of �(t) coincides with that done for DQW
(A) in [12].

In order to obtain numerical results for energy levels and, therefore, for � and T , we have
self-consistently solved the coupled Schrödinger and Poisson equations for both DQWs [14].
Figures 2(a), (b) show the square of the wavefunctions for structures (A) and (B), respectively,
corresponding to a situation close to the coupled-level resonance. Due to the large size of the
central barrier chosen for the first structure, the coupling between the two excited states is weak,
as reflected in figure 2(a). In contrast, the resonant levels of structure (B) are strongly coupled.
As was commented on before, the sizes have been chosen so that the interband and intersubband
energy values are roughly the same for both structures. Under resonant conditions, the

3 Note that the same τ1 appears in the population balance equation and here because we neglect the overlap between
|0〉 and |l〉 states.
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transverse velocities are |v̂⊥| ∼ 9 × 105 cm s−1 for DQW (A), and |v̂⊥| ∼ 1 × 106 cm s−1 for
DQW (B).

It should be stressed that the key role is played by the z-component of the vector
concentration nz

t , which is proportional to the dipole moment and, thus, a directly measurable
physical magnitude, together with the excited carrier concentration nt .

3. Quantum beats

In this section we present a solution of the linear system of balance equations (7), neglecting the
second addendum in equation (12), for the cases of short and finite pulse duration. With respect
to the short-pulse approximation, if the pulse duration τp 
 |�ω|−1,�−1

T , the generation
rates (equations (8) and (9)) take the forms Gx(t) � −a+(2T/�T )N δp(t), G y(t) � 0, and

G(t) � b+N δp(t), with the δ-like function δp(t) = (2wt/π)
∫ 0
−∞ dτ wt+τ /τ

2
p . Thus, the

photoinduced redistribution of the carrier concentration can be written as the step-like function
nt = b+N

∫ t
−∞ dt ′ δp(t ′), which is proportional to the step function θ(t) if τp → 0. Since the

photoinduced dipole moment is expressed through nz
t , we obtain the z-component of nt in the

form

nz
t = θ(t)N

{
cos

[
�T

2
(t − τp)

]
+ cos (�T t)

}
. (13)

For the short-pulse approximation, the differences between the above-presented results
and those corresponding to the case of the interband excitation (as considered in [8]) are mainly
attributable to the different characteristic concentrations and to the strong damping caused by
the interband relaxation. Comparing equation (10) with the characteristic carrier concentration
for the interband excitation, N∗ (given by the equation (18) in [8]), we obtain

N
N∗ � 4n2Dτp

ρ∗
2Dh̄

(
E⊥
E∗

v⊥εg

Pεo

)2

, (14)

where the interband excitation is characterized by the Kane velocity P , the gap εg, the reduced
density of states ρ∗

2D, and the field strength E∗. If E⊥ ∼ E∗, and the pulse is not too short
(τp ∼ 1 ps), the ratio (14) is about 16 (case (A)) and 26 (case (B)) for the GaAlAs-based
structures with a total 2D-concentration n2D � 1.4 × 1011 cm−2 and the dimensions used in
figure 1. Thus, the intersubband excitation appears to be more effective than the interband one.

The response seems to be more complicated for the finite pulse duration case due to the
peculiarities of the relaxation processes. We have used below the Gaussian envelope function,
wt = exp[−(t/τp)

2/2], a semiempirical value of the damping τ0 = 35 ps [15], a dephasing
time caused by the finite broadening of the intersubband transition τ2 = 1 ps [16, 17] and
an interband relaxation time due to LO phonons τ1 = 3.5 ps [7, 17]. We consider first the
evolution of the carrier concentration. Figure 3 shows the evolution of nt with the increase
of the pulse duration τp�T /2π , for three detuning frequencies �ω = 0, �ω = �T /2, and
�ω = �T (figures 3(a)–(c), respectively) and for DQW (A). Due to the different character of
the involved transitions, the photoexcited carrier concentration nt in DQW (B) shows a different
behaviour from that corresponding to the structure (A). Panel 2(d) represents the concentration
profile for DQW (B) when �ω = 0 and for five different pulse duration times. A new non-
monotonic behaviour appears in all these cases in contrast to that of the interband excitation
case [8]. For 0 � τp�T /2π < 1, nt/N behaves like in the interband case (corresponding
to the short pulse context) with some types of oscillation superimposed. For τp�T /2π � 1,
nt/N these oscillations are strongly amplified around t = 0 for �ω = 0 and �ω = �T ,
when the excited sublevel(s) is (are) not tuned, before decaying. It should be noted that the
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Figure 3. Temporal evolution profile of the excited electron concentration nt for different pulse
duration values. Panels ((a)–(c)) correspond to the structure (A) for different detuning frequencies.
Panel (d) corresponds to the structure (B). Pulse duration times are indicated by arrows with
π/�T = 0.44 ps.

excitation pulse is centred at t = 0. The number of oscillations depends on the pulse duration
τp, as figures 3(a), (c) display. It is important to note that these oscillations have a period
2π/�T , twice the nz

t quantum beats period, because such oscillations are controlled by the
term �ω + �T /2 and strongly influence the initial stages of nz

t . An exception takes place
when one of the levels is tuned, e.g., �ω = ±�T /2. Then, the carrier concentration shows a
monotonic behaviour with a growth rate similar to that of the interband pump (figure 3 (b)).
Also visible in figure 3 is the exponential damping of the photoexcited electrons caused by the
dephasing time, τ2.

Figures 4 and 5 illustrate the temporal evolution of the dipole moment, which is
proportional to nz

t , for different regions of parameters, τp, η = �/�T , and �ω.
Figures 4(a), 5(a) are for sample (A) and figures 4(b), 5(b) for sample (B), respectively.
The main difference between the finite pulse excitation and the short pulse excitation is the
existence of two different regimes in the former event. This peculiarity seems to be more
evident in the structure (B). When �ω = 0 and η = 0 (upper panels of figures 4(a), (b))
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Figure 4. Temporal evolution of nz
t /N for η = 0. Figures 4(a) and (b) correspond to structures

(A) and (B), respectively. Solid and dashed curves are plotted for τp = 1.76 ps (zero-phase shift)
and for τp = 2.2 ps (π -phase shift). The upper and lower panels correspond to �ω = 0 and �T /2.

Figure 5. The same as in figure 4 for η = 0.7. Solid curve: τp = 1.76 ps.

the finite pulse produces a transition from a regime in which the electron density is mainly
located in a well to two-well oscillations. This transition occurs when the pulse is switched
off. The dipole moment exhibits a bigger oscillation amplitude while the pulse holds and Rabi
oscillations are dominant. After switching off the pulse, the quantum beats become dominant
and the oscillations decay due to relaxation until they reach equilibrium when the photoexcited
carrier concentration is equally distributed between the wells. The balance situation is different
for the two samples studied. In case (A) the electronic redistribution between both wells is
quickly reached because the photoexcited electrons decay from the coupled levels to the ground
state by means of the LO phonon emission. We must keep in mind that we are representing
here the distribution nz

t corresponding to the coupled excited levels. In contrast, in the second
sample, (B), we are representing the carrier concentration for the non-excited coupled levels. In
this case the electronic balance redistribution between the wells is caused by the intersubband
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Figure 6. Nonlinear regime of the dipole moment nz
t /N for η = 0. Figures 5(a) and (b) correspond

to DQWs (A) and (B), respectively. Solid and dashed curves are plotted for τp = 1.76 ps (zero-
phase shift) and for τp = 2.2 ps (π -phase shift). The upper and lower panels correspond to �ω = 0
and �T /2.

dephasing relaxation. This process is slower than the intersubband relaxation, e.g., τ0 > τ1

(see numerical values above). For this reason the oscillations last for a longer time. Figures 4
and 5 show these features of the dipole moment in the cases of zero-phase shift (�T τp = 4π)
and π-phase shift (�T τp = 5π) as indicated in figure captions. Figure 4 has been calculated
for η = 0, when the two tunnel-coupled states resonate, and it corresponds to applied electric
fields of 7 kV cm−1 (DQW (A)) and 2 kV cm−1 (DQW (B)), respectively. Figure 5 has been
calculated for η = 0.7, out of the resonance of the tunnel-coupled levels. In this situation
the electronic concentration mainly occupies the left-hand well and the oscillation amplitude
becomes quenched.

The influence of the detuning frequency when η = 0 can be explained as follows. If
�ω = 0 (upper panel of figure 4), a fast transfer of the electron density from the well in
which electrons were initially created to the other well occurs. For �ω = �T /2 (lower panel
of figure 4), the electron density oscillates between coupled levels from the beginning of the
excitation. Out of the resonance between the tunnel-coupled levels (η �= 0, figure 4) most of
the electron density remains in the left-hand well and the transfer does not become effective
because of level decoupling. The practical disappearance of the oscillations when �ω = �T /2
is especially striking.

4. Nonlinear coherent response

Now we turn to the description of the nonlinear response. In order to do this we will take
into account the Coulomb renormalization of the level splitting energy, when nt is governed
by the nonlinear system of equation (7), and Lt is determined through equation (12). The
characteristic concentration, N , directly related to the pulse excitation density, is responsible
for the nonlinearity. In order to get an effective Coulomb renormalization we have used
N � 2 × 1010 cm−2 (corresponding to an excitation energy density of about 0.2 µJ cm−2)
when the nonlinear response becomes noticeable.

Figures 6(a), (b) show the evolution of the dipole moment, nz
t , corresponding to a

characteristic concentration of N ∼ 0.14n2D(τp�T /π)2, at the coupled-level resonance
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Figure 7. The same as in figure 6 for η = 0.7.

(η = 0), zero-phase shift, and for structures (A) and (B), respectively. We should always
keep in mind that N depends on τ 2

p . Thus, for a fixed excitation energy, we have a different
N value for each pulse duration. The main result we can observe is that the oscillation period
decreases and this is caused by a high N value. This period also depends on the detuning
frequency. As a consequence of this dependency, a slight Coulomb-induced variation appears
between different τp and �ω cases. This behaviour is more noticeable in structure (B) than
in (A) because the relation Nπe2 Z/εT , which mainly determines the Coulomb effects in
equation (7) (see [12]), is greater in the former case for the same characteristic concentration
because of the different values of v⊥. Another feature induced by the Coulomb interaction
occurs while the excitation pulse is acting on the samples. The term �ω+�T /2, which initially
controls nt (and dipole moment oscillations), loses part of its importance and the masking of
the intersubband oscillations diminishes.

By comparing figures 6 with 4 one can see a slight displacement of the electronic
concentration to the left-hand QW caused by the above-mentioned Coulomb renormalization
when �ω = 0 (upper panels). Once again the detuning frequency plays the main role in the
oscillatory behaviour, leading to a carrier concentration, which is located in the left-hand well,
one order of magnitude higher for �ω = �T /2 than for �ω = 0. Such a behaviour is common
for both samples studied.

We have already shown (figure 5) that, being out of the resonance condition (e.g. η = 0.7),
differences produced by the detuning frequency are small, and this kind of behaviour remains
when the Coulomb renormalization is introduced (figures 7(a), (b)). However, there is a clear
dissimilarity between structures (A) and (B). In the first sample the electronic concentration
oscillates between the two wells from when the excitation pulse is switched on (figure 7(a)).
Such behaviour is caused by a new situation of resonance at η �= 0. To understand this
point we must underline that the η-values corresponding to resonance and off-resonance are
strictly defined for the linear response. When the level renormalization is included resonance
conditions vary and, hence, the electric fields to get them will also vary. In the other case, and
for the same reason, electrons always prefer to stay mainly in the left-hand QW (figure 7(b)).
These different behaviours are caused by the opposite sign in the expression for the Coulomb
level splitting renormalization (equation (12)). Finally, one can observe as a general behaviour
that the dipole moment oscillations are weak in structure (A). Furthermore, for both structures,
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the temporal evolution of the dipole moment loses its oscillatory behaviour almost completely
when �ω = �T /2, the evolution depending essentially on the total concentration of excited
electrons.

5. Concluding remarks

Summarizing, we have described the coherent dynamics of electrons in DQWs by taking
into account the peculiarities of the intersubband excitation and relaxation for transitions
between single and tunnel-coupled states. The temporal dependences of the photoinduced
carrier concentration and the dipole moment are obtained both for the second-order response
and the nonlinear regime,when the splitting energy is renormalized by the photoexcited charge.

Furthermore, we discuss the assumptions made. Excluding the intersubband polarization
at the mid-IR frequency, we only consider pulse durations longer than the period of excitation
and the short-pulse approximation in section 3 is restricted by this assumption. Both the
tight-binding approximation for the description of the tunnel-coupled states and the use of
the parabolic dispersion laws are valid for the DQWs under consideration with an accuracy
of 10% or better. The overlap between the single-level and the lower tunnel-coupled state is
neglected in the calculation of the intersubband velocity matrix element because it is a small
contribution to the generation rate. The simple relaxation time approach is also widely used
for the description of similar structures. The above-used dephasing and population relaxation
times were taken from the experimental data for similar structures [15–17]. In applying the
single-particle description of the high-frequency response we have neglected the Coulomb
renormalization of the intersubband transitions due to depolarization and exchange effects, so
that the nonlinear regime of the response under a not very low pump intensity may take place
if � is not very big. On the other hand, we do not consider here the high-intensity pump
case, restricting ourselves to the inequality N < n2D when there are not Rabi oscillations
(see the consideration in [18]). In addition, a self-consistent description of levels leads to a
weak modifications of response. All these conditions are satisfied for the concentrations and
intensities used in sections 3 and 4.

To conclude, the peculiarities of coherent dynamics under the intersubband transitions of
electrons described in sections 3 and 4 are interesting in order to select effective conditions both
for the THz emission, observed only under the interband excitation, and for the redistribution of
the photoinduced carrier concentration (see recent mid-IR measurements in a single QW [3]).
In addition, an investigation of tunnel-coupled structures is interesting for intersubband devices
such are quantum cascade lasers or quantum well infrared photodetectors. It would also be
interesting to verify scattering mechanisms by the use of this approach and to study the high-
intensity pump, when an interplay between the nonlinear dynamics and Rabi oscillations
appears. This case requires a special consideration.
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